高h肉辣文公交车_色偷偷综合_99热国产这里只有精品9九_国产亚洲精品日韩香蕉网

首頁 >> 新聞中心 >>行業(yè)科技 >> 壓力傳感器的支持向量機非線性回歸建模
详细内容

壓力傳感器的支持向量機非線性回歸建模

      壓力傳感器的輸出特性易受到環(huán)境因素,尤其是溫度變化的影響。 針對該問題 ,提出了利用支持向量機(SVM ) 對壓力傳感器輸出特性進行非線性補償 的校正模型。 校正模型利用 SVM的回歸算法來逼近非線性函數(shù)的特點 , 通過建立壓力傳感器輸出特性與其實際電壓值之間非線性映射關(guān) 系的校正模型來實現(xiàn)壓力傳感器的校正。實例表明:該方法能有效地減少溫度變化對傳感器輸出的影響 ,且校正后的壓力傳感器具有更高的測量精度和溫度穩(wěn)定性。

0 引 言

      在數(shù)據(jù)采集與測控系統(tǒng)中, 由于壓力傳感器具有結(jié)構(gòu)簡單、靈敏度高、動態(tài)響應(yīng)特性好、抗過載能力強等一系列優(yōu)點,得到了廣泛的應(yīng)用。 但壓力傳感器對溫度等環(huán)境參數(shù)較為敏感,這些因素在實際環(huán)境中總是相互關(guān)聯(lián)的,給測量結(jié)果帶來了誤差,嚴重影響了傳感器的線性度,致使其準確度大大下降。為了提高傳感器的性能, 必須對其進行校正。 但各種干擾因素對測量結(jié)果的影響很難用簡單的函數(shù)表達式來描述 ,因此 ,建立傳感器的輸出特性校正模型并求解模型往往 比較繁瑣 。

支持 向量機 ( support vector m achine ,SV M ) 是2O世紀90年代中期提出的一種機器學(xué)習(xí)算法,它建立在統(tǒng)計學(xué)習(xí)理論的基礎(chǔ)上 。 傳統(tǒng)的學(xué)習(xí)算法(如神經(jīng)網(wǎng)絡(luò)) 采用的是經(jīng)驗風(fēng)險最小化 (ERM) 準則 , 容易出現(xiàn)過擬合或者 欠擬合現(xiàn)象 。 SV M 以結(jié)構(gòu)風(fēng) 險最小化 (SR M ) 為準則 , 對于有限樣本學(xué)習(xí) 問題 已經(jīng)表現(xiàn) 出很多優(yōu)于 已有方法 的性能 。 同時 SV M 算法是一個凸二次優(yōu)化問題 ,能夠保證找 到的極值解就是全局最優(yōu)解 , 能較 好地 解決 小樣 本 、非線性和高維數(shù)的問題。 本文針對傳感器非線性誤差校正的需求,提 出了一 種壓力傳感器的SVM 非線性回歸模型。

1 S V M 校正傳感器原理

1. 1 校正原理

設(shè)壓力傳感器的數(shù)學(xué)模型為

fbe0aa46-d3dc-414d-9dd1-31cab4cc8605.png

      其中,為待測目標參數(shù),為溫度值, y為傳感器的輸出。式(1)存反函數(shù), 即X=f - (Y , T ) ,但其反函數(shù)很難使用具體的函數(shù)來描述,可以利用SV M來逼近這種非線 函數(shù)。

      SVM 校正模型的原理為: 利用非線性映射將輸入的數(shù)據(jù)映射到高維空間,在高維空間變換后進行回歸分析,將目標參量測量傳感器的輸出與溫度變化等非目標參量敏感元件的輸出作為SVM校正模型的輸入,將壓力標定值作為模型的輸出,以此來減少溫度變化等非目標參量對被測目標參數(shù)的影響。 利用SVM校正壓力傳感器的原理。

1.2 SV M非線性回歸模型

      利用SVM校正模型來校正壓力傳感器,其實質(zhì)是非線性回歸問題 -5 。 即利用 數(shù)學(xué)方法建立因變量與自變量之間 回歸關(guān)系函數(shù)表達式 (稱回歸方程) 。將 SVM應(yīng)用到回歸分析中,需要定義不敏感損失函數(shù)s,該函數(shù)可以忽略真實值上下范圍內(nèi)的誤差。 變量度量了訓(xùn)練點上誤差的代價,在s不敏感區(qū)內(nèi)的誤差為0 。 損失函數(shù)的解以函數(shù)的最小化為特征 ,使用 不敏感函數(shù) 可 以確保全 局最小 值 的存在和可靠泛化界的優(yōu)化。

圖 2 顯示了非線性回歸函數(shù)的不敏感區(qū)函數(shù) 。

78af46c4-29ac-4c16-b627-bed986493b53.png

圖 2 £·不 敏 感 區(qū) 函數(shù)

可以用下面的SVM非線性回歸來建立壓力傳感器的非線性回歸模型

設(shè)壓力傳感器的數(shù)據(jù)樣本集為,xi yi= 1 ,n ,其 中輸入 R ,需要求解 的回歸 函數(shù)可 以表示為

a2c152fc-d704-447e-9ff5-cfb80ab4fca7.png

根據(jù)結(jié)構(gòu)最小化 準則 ,可 以將式 (2 ) 轉(zhuǎn)換為如下 的優(yōu)化 問題

6198932e-3506-43d4-86e8-9e6b4feb5175.png

其約束條件為

4995bc10-92f0-416b-9e65-f68c2081d495.png

       式 (3) 中的第一項使得回歸函數(shù)更加光滑,有助于提高泛化能力,第二項可以減少誤差 。 C 為懲罰系數(shù), C 越大表示對訓(xùn)練誤差大于 s 的數(shù)據(jù)樣 本 的懲 罰越大 。 s 規(guī)定 了回歸 函數(shù)與輸 出的誤差要求 , 越小 , 回歸 函數(shù)與輸 出的誤差越小 ,估計精度越高 。

      目前 ,懲罰 系數(shù) C 值 的選擇很難用理論方法確 定 ,要根據(jù)實際應(yīng)用 的要求來確定 ,調(diào)節(jié)參數(shù) 的準則是 : 檢查某特定加權(quán)的修正是否確實 減少 了誤差 ,并根 據(jù)實 際情 況進行 增減操作, 直到滿足設(shè)計要求。

      綜上所述 ,利用 SV M 回歸模型校正傳感器的流程為 :

1 ) 獲取標定數(shù)據(jù)樣本 ,組成訓(xùn)練樣本和測試樣本 ,并對數(shù)據(jù)歸一化 ;
2 ) 選擇適合的核函數(shù), 確定精度誤差 s 和核函數(shù)的相關(guān)參數(shù) ,用訓(xùn) 練樣本對 SV M 模 型進行訓(xùn)練 , 確定 和 b 的值 ;
3 ) 當(dāng)輸出與期望誤差值滿足要求時 ,訓(xùn)練結(jié)束 ;轉(zhuǎn)到 步驟 (4 ) ,否則 ,重新調(diào)整 SV M 參數(shù) ,轉(zhuǎn)到步驟 (2 ) ;
4) 用測試樣本對校 正模 型進 行檢 驗 ,如 果滿 足誤差要求 ,確定 SV M 模 型參數(shù) ,結(jié)束 ,否則 , 轉(zhuǎn)到步驟 (2 ) 。
2 傳感器校正
2 . 1 傳感器標定數(shù)據(jù)與預(yù)處理

      訓(xùn)練樣本選用 文獻 [8 ] 中不同工作環(huán) 境下 的傳 感器輸入輸出標定值 ,具體數(shù)據(jù)見表 1 , 其中, 為壓力傳感器的輸出電壓, 為溫度傳感器的輸出電壓。
b92eeed6-365d-4a39-8e3c-c693ca4aaeca.png

表 1 傳感器輸入輸 出標定值

為 了避免樣本 中存 在奇異樣 本數(shù) 據(jù) , 方便程 序處理 數(shù)據(jù) ,需要對樣本進行歸一化預(yù)處理 ,歸一化 函數(shù)如下

2. 2 SV M 回歸建模

在經(jīng) 歸一化后 的標定值 中 ,選擇 為 25 ,44. 3 ,59. 6 ℃時的標定值作 為 SV M 的訓(xùn) 練樣 本 , 為 81 . 6 ℃ 的值 作為SV M 的校驗樣本 。 在 M atlab 中利用 SV M 工具 箱 中的 函數(shù)編寫訓(xùn)練程序 , 選 擇合 適 的 SV M 參 數(shù) 并將 訓(xùn)I練樣 本 輸入SV M 進行訓(xùn)練 ,并在 M atlab 中進行 了仿真 。 做 出校正前后為 25 ,44. 3 ,59. 6 ℃ 時的傳感器輸出曲線 圖 ,如圖 3 和 圖4所 示 。

cca84018-1432-49b3-9a0e-67fbee1ba544.png

圖 3 校正前壓力傳感器的輸 出特性 曲線

5d711582-e4a5-495c-afa7-6a227d5f577a.png

圖4 校正后壓 力傳感器的輸 出特性 曲線

      從 圖 3 和 圖4 中的曲線可 以看 出 :經(jīng) 過 SV M 回歸模 型校正的傳感器輸出曲線的線性度得到了改善 , 回歸精度也較高 ,處 理后 數(shù)據(jù) 的最 大絕 對波動 也大 大減少 。 可見通 過校正模型處理后 , 在相 同的溫度 變化 下 ,壓 力傳感器 的輸 出特性得 到了改善 , 穩(wěn)定性也 得到了提 高。

3 結(jié) 論
      利用 SV M 構(gòu) 造傳感器 的非線性 回歸模型 ,對傳感器 的溫度影 響進行補償 ,并對非線性 誤差 進行校正 ,此方法 具有建模速度快 、校正精度高的優(yōu)點。 應(yīng) 用結(jié)果表 明 :與 目前采用 的其他算法 比較 ,在 校正精 度和算 法 的推廣性 上都具 有一 定的優(yōu)越性 。 但算法 中核 函數(shù) 的選擇 與其參數(shù) 的確定沒有確定 的理論依 據(jù) , 有待作 進一 步研究 。 通過 驗證也 可 以看出對 原始數(shù)據(jù)進行適 當(dāng)?shù)念A(yù)處理 可以提高校正模 型的精度。

參考文獻 :
[1 ] C ristianini N ,Shaw e-Taylo J. 支持 向量 機導(dǎo)論 [M ] . 李 國正 ,王 猛 ,曾華 軍 ,譯 .北京 : 電子工業(yè)出版社 ,2004.
[2 ] V apnik V N .統(tǒng)計學(xué)習(xí)理論 的本質(zhì) [M ] . 張學(xué)工 ,譯 . 北京 : 清華大學(xué)出版社 ,2008.
[3 ] V apnik V . Statistical learning theory [ M ] . N ew Y ork : Spr i nger,1 99 8 .
[4 ] 李 國玉 ,孫以材 ,潘國峰 ,等.基 于 B P 網(wǎng)絡(luò)的壓力傳感器信 息融合 [J] . 儀器儀表學(xué)報 , 2005 ,26 (2 ) :168 - 171.
[5 ] 白 鵬 , 張 喜 斌. 基 于 支 持 向 量 機 的 壓 力 傳 感 器 校 正 模型[J] . 空軍工程大學(xué) 學(xué)報 : 自然 科學(xué) 版 ,2007 ,8 (5 ) :37 —4 0 .
[6 ] 張學(xué) 工. 關(guān) 于統(tǒng) 計學(xué) 習(xí)理論 與支 持向量 機 [J ] . 自動化學(xué) 報2000 ,26 (1 ) :32 —42 .
[7 ] 鄧 乃揚 , 田英杰. 數(shù)據(jù)挖 掘中 的新 方法一 支持 向量機 [ M ] .北 京:科學(xué) 出版社 ,2004 .
[8 ] 梁 偉鋒 . 基 于最 小 二 乘 支持 向量 機 的壓 力 傳感 器 溫 度 補償 [J] . 儀器儀表學(xué)報 2007 ,28 (12 ) :2235 - 2238 .





 班寧產(chǎn)品匯總   


seo seo